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A B S T R A C T

Hydrological models have been widely used to predict runoff in regions with observed discharge data, and
regionalization methods have been extensively discussed for providing runoff predictions in ungauged basins
(PUB), especially during the PUB decade (2003–2012). Great progress has been achieved in the field of re-
gionalization in previous studies, in which different hydrological models have been coupled with various re-
gionalization methods. However, different conclusions have been drawn due to the use of different hydrological
models, regionalization methods, and study regions. In this study, we assessed the performance of the five most
widely used regionalization methods (spatial proximity with parameter averaging option (SP-par), spatial
proximity with output averaging option (SP-out), physical similarity with parameter averaging option (Phy-par),
physical similarity with output averaging option (Phy-out), and regression methods (PCR)) and four daily
rainfall-runoff models (GR4J, WASMOD, HBV and XAJ, with 6, 8, 13, and 17 parameters, respectively) at the
same time. Our aim was to evaluate how the performance of the regionalization methods depends on (a) the
selection of hydrological models, (b) nonstationary climate conditions, and (c) different climatic regions. This
investigation used data from 86 independent catchments evenly distributed throughout Norway, covering three
different climate zones (oceanic, continental and polar tundra) according to the Köppen-Geiger classification.
The results showed that (a) the SP-out and Phy-out methods performed better than the SP-par and Phy-par for all
the hydrological models, and the regression method performed worst in most cases; (b) the difference between
the parameter averaging option and the output averaging option is positively related to the number of hydro-
logical model parameters, i.e. the greater the number of parameters, the larger the difference between the two
options; (c) the XAJ model with the greatest number of parameters produced the best results in most cases, and
models with fewer parameters tend to produce similar performance for the different regionalization methods; (d)
models with more parameters displayed larger declines in performance than those with fewer parameters for
nonstationary conditions; and (e) clear differences in the performance of the regionalization methods exist
among the three climatic regions. This study provides insight into the relationship between the complexity of
hydrological models and regionalization methods in cold and seasonally snow-covered regions.

1. Introduction

Runoff prediction plays a significant and essential role in water
resources management, the assessment of the impact of environmental
change (e.g., climate and land use), and hydrological design (e.g.,
Blöschl and Montanari, 2010; Parajka et al., 2013). During the last
several decades, hydrological models have become the most popular
and common solution for runoff predictions. However, the models have
free parameters to be calibrated by using the observed discharge data
before predicting the runoff hydrographs, which are not available in
many catchments of interest (e.g., He et al., 2011; Parajka et al., 2013).

This fact made the topic ‘predictions in basins without observed dis-
charge data (ungauged basins)’ attractive and challenging for hydrol-
ogists (e.g., Parajka et al., 2007; Sivapalan et al., 2003; Xu, 2003). As a
result, the International Association of Hydrological Sciences (IAHS)
established a “Decade on Predictions in Ungauged Basins (PUB):
2003–2012”, and great progress has been achieved during this period
(Hrachowitz et al., 2013).
Regionalization is defined as the method for predicting runoff in

ungauged basins by transferring information from gauged (donor) to
ungauged (target) catchments (e.g., Rojas-Serna et al., 2016; Razavi
and Coulibaly, 2013). In general, regionalization methods are classified

https://doi.org/10.1016/j.jhydrol.2019.124357
Received 17 April 2019; Received in revised form 6 November 2019; Accepted 12 November 2019

⁎ Corresponding author.
E-mail address: c.y.xu@geo.uio.no (C.-Y. Xu).

Journal of Hydrology 582 (2020) 124357

Available online 15 November 2019
0022-1694/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2019.124357
https://doi.org/10.1016/j.jhydrol.2019.124357
mailto:c.y.xu@geo.uio.no
https://doi.org/10.1016/j.jhydrol.2019.124357
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2019.124357&domain=pdf


into three categories: (a) spatial proximity methods assume that geo-
graphically close catchments have similar hydrological behaviors (e.g.,
Egbuniwe and Todd, 1976; Vandewiele et al., 1991); (b) physical si-
milarity methods assume that catchments with similar physical char-
acteristics have the same hydrological response (e.g., Burn and
Boorman, 1993; McIntyre et al., 2005), thus, the parameter values are
transferred to ungauged basins from either geographically close or
physically similar gauged basins; and (c) the regression method, which
is one of the most popular and oldest regionalization approaches
(Oudin et al., 2008), links model parameters to physical and climatic
catchment characteristics by regression functions and assumes that the
relationship is transferable from gauged to ungauged basins (e.g.,
Magette et al., 1976; Young, 2006).
Many studies have applied and compared regionalization methods for

various regions in combination with a wide range of hydrological
models. However, in many cases, the conclusion about which method
performed best differs largely among the studies. For example, Merz and
Blöschl (2004) concluded that the spatial proximity method performed
better than the regression method for catchments in Austria using the
HBV model. On the other hand, Young (2006) found that the regression
method gave better results than the spatial proximity method in the UK.
Bao et al. (2012) concluded that the physical similarity method was best
by using the Akaike information criterion (AIC) on 55 catchments in
China. Different models were applied for different regions in these stu-
dies, and therefore many hydrologists claim that the performance of
regionalization methods depends on the study area and the choice of
hydrological model (e.g., Parajka et al., 2013; Reichl et al., 2009; Salinas
et al., 2013; Samuel et al., 2011; Viglione et al., 2013). Most of the
above-mentioned studies only used one hydrological model in a specific
region, and conclusions cannot be drawn on how the model selection or
study region affects the performance of the regionalization methods.
Few studies have assessed the performance of regionalization

methods using multiple models. Li and Zhang (2017) used SIMHYD (10
model parameters) and XAJ (12 model parameters) in Australia and
found consistent regionalization results for both models. The same con-
clusion was drawn by Li et al. (2014), where GR4J (7 model parameters)
and SIMHYD (12 model parameters) were applied in the southeast Ti-
betan Plateau. Furthermore, Petheram et al. (2012) conducted a com-
parison by using five rainfall-runoff models and concluded that the dif-
ference between hydrological models was negligible for runoff prediction
in ungauged basins. This conclusion was consistent with two other stu-
dies (Chiew, 2010; Viney et al., 2009b), which also included five hy-
drological models. However, none of these studies included a regression
approach, which provided very different results when used with either
the GR4J (4 model parameters) or TOPMO (6 model parameters) model
in the study of Oudin et al. (2008), who tested three kinds of re-
gionalization methods using two hydrological models for 913 catchments
in France. Either the number of regionalization methods or the number
of models used in previous studies is still too small to draw a general
conclusion. In addition, all these evaluations have been performed for
relatively warm climate regions, where the snow process is of limited
importance. Thus, a more comprehensive study is needed to investigate
how regionalization performance differs with multiple hydrological
models of different complexity for runoff prediction in ungauged basins,
especially for cold and seasonally snow-covered regions.
Furthermore, climate is changing (IPCC, 2014), resulting in non-

stationary relationships between rainfall and runoff (Zhang et al.,
2011), which makes the reliability of applying the conclusions made in
a historical period into future application questionable. Thus, for future
runoff prediction in ungauged basins, it is essential to investigate the
transferability of the regionalization methods under changing climatic
conditions (e.g., Broderick, 2016; Yang et al., 2019). Finally, re-
gionalization performances also vary between regions, according to
Parajka et al. (2013), who statistically summarized this conclusion from
34 regionalization studies. However, it cannot explicitly present the
performance difference between regions for specifically selected

regionalization methods because different hydrological models and
regionalization methods were applied in the studies cited and sum-
marized by Parajka et al. (2013).
In this study, we perform a comprehensive evaluation of the per-

formance of five widely used regionalization methods (see Section 3.2)
combined with four frequently used hydrological models (GR4J–6
parameters, WASMOD–8 parameters, HBV–13 parameters and XAJ–17
parameters) in regions with highly contrasting physiographic and cli-
matic settings. The evaluation is based on 86 catchments in Norway,
belonging to three different climatic regions according to the Köppen-
Geiger classification (Kottek et al. 2006) and under different climate
conditions. This is the first study that specifically addresses how the
performance of the regionalization methods (a) depends on the selec-
tion of hydrological models, (b) changes in different climate conditions,
i.e., when air temperature increases, and (c) varies between different
climate regions as defined by the Köppen-Geiger classification.

2. Study area and data

2.1. Study area

Our study catchments are located in Norway, which is situated in
northern Europe in the western and northern part of the Scandinavian
Peninsula. Norway has a long and rugged coastline, elevation spanning
from sea level to 2469 m.a.sl., and latitudes ranging from 58° to 71°N.
This results in highly variable hydroclimatological conditions across the
study domain (Vormoor et al., 2016; Yang et al., 2018, 2019). In this
study, we used data from 86 nonoverlapping catchments distributed
evenly throughout our study domain (Figure 1). These stations have
continuous meteorological data and discharge data records with less than
40% missing values during the periods from 1980 to 1989 as well as
2006 to 2015. These two periods are used in this study. The left panel
map in Figure 1 also displays the Köppen-Geiger climate classification,
which is based on data from 1976 to 2000 (Kottek et al., 2006; Peel et al.,
2007; Beck et al., 2018). Note that the original classification divided
Norway into five different climate groups. However, in two of these
groups, less than 10 catchments were located. We therefore merged some
of the groups, resulting in the following three regions: (a) oceanic climate
containing 19 catchments, (b) continental climate containing 52 catch-
ments and (c) polar tundra climate containing 15 catchments.

2.2. Data

For the hydrological simulations, we used daily precipitation and
temperature data acquired from the gridded seNorge dataset with a re-
solution of 1 km produced by the Norwegian Meteorological Institute
(Tveito et al., 2005; Mohr, 2009; Jansson, 2007). Daily discharge data
were obtained from the hydrometric observation network of the Norwe-
gian Water Resources and Energy Directorate (NVE). To test the perfor-
mance of the regionalization methods under varying climate conditions,
we analyzed the precipitation and temperature records for the period from
1980 to 2015 (Figure 2). For precipitation, there is no clear trend, whereas
temperature increases throughout the study period. For model calibration
and verification, we selected ten years at the start (1980 to 1989) and the
end (2006 to 2015) of the whole period since these two periods show the
largest difference in air temperature. For the first period, the average
precipitation is 1932 mm/year, and the air temperature is 1.2 °C. For the
second period, the average precipitation is 2027 mm/year, and the air
temperature is 2.6 °C. The right panels in Figure 2 show the average
monthly precipitation, temperature and Pardé coefficient (ratio between
the average monthly discharge and the mean annual runoff) for the
catchments in each climatic group. The oceanic climate group is char-
acterized by higher precipitation during autumn and winter and higher air
temperature than that of the two remaining groups. The watersheds in the
oceanic climate group also show two peaks in runoff (compare the Pardé
coefficient between the groups) resulting from spring snowmelt and strong

X. Yang, et al. Journal of Hydrology 582 (2020) 124357

2



rainfall during autumn. The continental climate group displays low sea-
sonality for precipitation but high seasonal variations in temperature, re-
sulting in one peak runoff caused by snowmelt. The climate characteristics

for the polar tundra climate group are similar to those of the continental
group, but with lower temperature, and the snowmelt-induced peak in
runoff occurs later.
Table 1 shows the average annual and seasonal precipitation, tem-

perature and runoff for the three climate classes. Precipitation in the
oceanic climate group is substantially larger than that in the other two
groups, which show rather similar precipitation amounts. For tempera-
ture, the oceanic climate group shows the highest values, whereas the
coldest temperatures are recorded in the polar tundra climate group. In
particular, for the oceanic group, precipitation increases from the cali-
bration to verification period for the winter season, but for the summer
season, the difference is small between the two periods. For temperature,
the increase from the calibration to verification period is smallest in the
oceanic region compared to the other regions. The seasonal characteristics
in runoff are similar to those of precipitation. Note that summer runoff
decreases from the calibration to the verification period for all groups.
Since there is no potential evapotranspiration (Ep) data available in

our study area, which are needed as the input data for the hydrological
models, we applied the Hargreaves equation (Hargreaves, 1975) to
calculate Ep (mm/day), which is recommended by Shuttleworth (1993)
and Xu and Singh (2002):

E R TC TR0.0023 ( 17.8)p a= + (1)

where Rais the extraterrestrial radiation for the location in mm/day
evaporation equivalent (Allen et al., 1998), TC is the temperature (°C),
and TR is the daily temperature range (°C).
A set of catchment descriptors is needed for two of the re-

gionalization methods, namely, the physical similarity and regression
methods (see Table 2). These catchment descriptors were used in Yang
et al. (2018, 2019). Similar catchment descriptors have been used in
several studies for evaluating regionalization methods (e.g., He et al.,
2011; McIntyre et al., 2005; Merz and Blöschl, 2004).

3. Methods

3.1. Hydrological models

Four widely used conceptual rainfall-runoff models running at a

Fig. 1. The location of the study catchments and the modified Köppen-Geiger
climate classification.

Fig. 2. The left panel shows yearly mean precipitation and temperature for the available data period, including a moving average with a sample window covering
10 years of data. The right panel shows the climatological distribution of precipitation, temperature and Pardé coefficient (i.e., ratio of the average monthly discharge
to the mean annual runoff) using monthly data for the three climatic regions.
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daily time step were selected for the analysis in this study, and a snow
module was included in the models since runoff in many of the catch-
ments is strongly affected by the accumulation and melting of snow.
The number of model parameters varies from 6 to 17 between the
models after adding the snow routine. Figure 3 shows the model
structures, and a description of the parameters is available in Table 3.
GR4J (Génie Rural à 4 paramètres Journalier) is a model based on

unit hydrograph principles with four free parameters (Perrin et al.,
2003). It has been widely used in regionalization studies worldwide,
such as in France (Oudin et al., 2008), China (Li et al., 2014) and
Australia (Zhang et al., 2014, 2016). We coupled the GR4J model with
a degree-day type snow module called CemaNeige that was developed
by Valéry (2010). This snow module allows us to estimate snowmelt
and simulate snowpack evolution using two additional parameters, and
the coupling of GR4J and CemaNeige has been tested in other studies
(e.g., Coron et al., 2014; Hublart et al., 2015).
WASMOD (The Water And Snow balance modelling system) is a

model with simple structure and has been validated in many different
climate regions (e.g., Xu and Singh, 2002; Li et al., 2013, 2015; Widén-
Nilsson et al., 2007; Xu and Halldin, 1997). For regionalization studies,
it has been applied in Sweden (Xu, 2003), Denmark (Muller-Wohlfeil
et al., 2003) and Norway (Yang et al., 2018, 2019). The version of
WASMOD used in this study has eight free parameters.
HBV (Hydrologiska Byråns Vattenbalansavdelning) is a popular

model used for runoff simulation in both gauged and ungauged basins.
For regionalization studies, it has been applied in different climate re-
gions, such as Austria (e.g., Merz and Blöschl, 2004; Parajka et al.,
2005), Sweden (Seibert and Beven, 2009), China (Jin et al., 2009),
Canada (Samuel et al., 2011) and the US (Pool et al., 2017). In our
study, we followed the structure and formulas in the HBV-light version
(Seibert and Vis, 2012), which includes a snow routine, soil moisture
routine, response function and routing routine. In total, this model has
thirteen calibration parameters.
The XAJ (Xin An Jiang) model was developed for humid regions in

China by Zhao et al. (1980, 1992) and has since become a widely used
model in flood forecasting, water resources assessment, and climate
change assessments. The original model consists of modules for com-
puting evapotranspiration, runoff production, runoff separation, and
flow routing. It has also been applied in many regionalization studies
(e.g., Zhang and Chiew, 2009; Li et al., 2009, 2017). We implemented
the structure shown in Lin et al. (2014) without the Muskingum routing
module because our catchments are rather small in size with steep slopes,
and therefore, river flow routing is not an important process (Li et al.,
2014). However, there is no snow module in XAJ, and therefore, we
coupled it with the CemaNeige snow module (see description of the GR4J
model above). This model system contains seventeen parameters in total.

3.2. Regionalization methods

Spatial proximity, physical similarity and regression methods are
commonly used in regionalization studies (e.g., Oudin et al., 2008;
Petheram et al., 2012; Hrachowitz et al., 2013). For spatial proximity
and physical similarity methods, which are classified as distance-based
regionalization methods according to He et al. (2011), the model
parameter values in ungauged catchments are transferred from gauged
donor catchments. For the regression method, the model parameter
values in ungauged catchments are determined by regression functions
established using data from gauged basins. The regression method in
this study is principal component regression (PCR), which couples
principal component analysis (PCA) with the multiple linear regression
method. Using PCA, a set of observations of possibly correlated catch-
ment descriptors is converted into a set of linearly uncorrelated vari-
ables called principal components. Then, the relationships among
model parameters and selected catchment descriptors are established
using multiple linear regression. Finally, these functions are used for
estimating model parameters in the ungauged catchments. Table 4
describes the equations and assumptions for the regionalization
methods applied in this study.
For distance-based regionalization methods, i.e., spatial proximity

and physical similarity, two approaches are often used for transferring
the model parameters from the gauged donor to the ungauged target
catchments (e.g., McIntyre et al., 2005; Oudin et al., 2008). (a) For the
so-called parameter averaging option, the model parameters from the

Table 1
The average precipitation, temperature and runoff information for all climate groups.

Precipitation (mm/period) Temperature (oC) Runoff (mm/period)

calibration validation calibration validation calibration validation

Oceanic climate Year 2949 3211 4.1 5.2 2158 2342
summer* 1411 1412 9.0 9.8 1197 1128
winter 1508 1800 −0.7 0.5 961 1214

Continental climate Year 1686 1750 0.8 2.3 1213 1250
summer* 867 873 7.0 8.0 898 835
winter 819 878 −5.3 −3.4 315 415

Polar tundra climate Year 1633 1688 0.0 1.4 1187 1236
summer* 817 819 6.1 7.1 942 908
winter 816 869 −6.1 −4.3 245 328

*Summer is from 1st of May to 31st of October.

Table 2
The statistical information about catchment descriptors used in regionalization
methods.

Mean Median Minimum Maximum

Area (km2) 340 145 3 5621
Climate index
Mean annual precipitation (mm) 2255 1922 601 6008
Precipitation seasonality indices(1) 3.1 2.9 1.7 7.0
Mean annual temperature (°C) 2.7 2.5 −2.2 7.3
Temperature seasonality indices(2) 15.5 15.4 7.5 24.2
Aridity index(3) 0.1 0.1 0.0 0.4
Terrain characteristics
Mean slope (°) 11 9 2 26
Mean elevation (m) 666 590 157 1472
Land use
Artificial (%) 0.5 0.0 0.0 8.0
Agriculture (%) 4.1 1.1 0.0 57.6
Forest (%) 84.7 87.8 34.8 100.0
Wetland (%) 7.0 2.2 0.0 41.6
Waterbody (%) 3.7 2.9 0.0 15.1

(1) Precipitation seasonality indices: the ratio between the three consecutive
wettest and driest months for each watershed.
(2) Temperature seasonality indices: the mean temperature of the hottest month
minus the mean temperature of the coldest month in °C.
(3) Aridity index: the ratio between annual mean precipitation and potential
evapotranspiration.
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donor catchments are first averaged and then used to run the model for
the target catchment. (b) For the so-called output averaging option, the
model is first run using the parameter sets from the donor catchments
(i.e., basins with runoff where model calibration is possible) on the
target catchment and the outputs from the model are then averaged. As
a result, there are five regionalization approaches used in this study, as
shown in Table 5. For a more detailed description, please see Yang et al.
(2018, 2019).

3.3. Performance evaluation

3.3.1. Model calibration and verification
In this study, we applied a widely used objective function proposed

by Viney et al. (2009a) when calibrating the models. This objective
function is a weighted combination of the Nash and Sutcliffe efficiency
(Nash and Sutcliffe, 1970) and a logarithmic penalty function based on
the bias as follows:

F NSE bias5 |ln(1 )|2.5= + (2)

where:

NSE
Q Q

Q Q
1

( )

( )
sim obs

obs obs

2

2
=

(3)

bias Q Q
Q

sim obs

obs

=
(4)

Qobs represents the observed runoff, and Qsim represents the simu-
lated runoff. F values can vary from −∞ to the optimal value of 1. This
objective function can come close to maximizing Nash and Sutcliffe
efficiency (NSE) and minimizing the bias at the same time (Vaze et al.,
2010). For the calibration process, we used a standard gradient-based
automatic optimization method (Lagarias et al., 1998) implemented in
the MATLAB software package (“fmincon” function; MATLAB R2016b,
The MathWorks, Inc., Natick, Massachusetts, United States).
The split-sample test is commonly used for model verification,

aiming to show the model validity in different climate conditions (e.g.,
Coron et al., 2012; Xu, 1999; Klemeš, 1986). In the current study, we
evaluate the model performance for 1980–1989 and 2006–2015, and

the temperature and precipitation in the latter period are approxi-
mately 1.4 °C and 5% higher than that in the first period.

3.3.2. Evaluation of regionalization methods
We performed three different evaluations of the regionalization

methods. In the first evaluation, the performance of the regionalization
methods was tested for all models using data from the calibration period,
aiming to show the differences among the models. In this step, we applied
a leave-one-out cross verification method as in many other studies (e.g.,
Yang et al., 2018; McIntyre et al., 2005). In the second analysis, we re-
peated the same evaluation but for the warmer and wetter verification
period. This analysis thus tests the transferability of both the re-
gionalization methods and hydrological models under climate change
conditions (e.g., Broderick, 2016; Li et al., 2012). In the final evaluation,
we summarize and discuss the performance of the regionalization methods
for the three different climatic regions (see Section 2.1). Since the climate
is changing to be warmer in the future (IPCC, 2014), the following re-
gionalization performance for different climate conditions is investigated
from 1980 to 1989 (calibration) to 2006–2015 (verification).

3.3.3. Evaluation criteria
To investigate the performance from different aspects, we applied

four different criteria in this study. The calibration function F (Eq. (2))
is the first selection since it considers both the goodness of fit and the
water balance aspects between the simulated and observed runoff. NSE
(Eq. (3)) is the second evaluation criterion, which is the most commonly
used criterion in hydrology to measure the fit of the hydrographs be-
tween the observed and simulated runoff, and is relatively sensitive to
high flow (e.g., Oudin et al., 2008; Pushpalatha et al., 2012; Zhang and
Chiew, 2009). Thus, we included another criterion, NSElog, which is
based on the same formulation as NSE but computed on logarithmic
transformed flows and with more emphasis on low flow (e.g., Oudin
et al., 2008; Pushpalatha et al., 2012). Finally, the percentage of bias
(Pbias) (Eq. (4)) is applied to measure the average tendency of the si-
mulation to be larger or smaller than the observed counterparts.
The range for F, NSE and NSElog is (− , 1), where 1 means the

simulated runoff perfectly fits the observed runoff and less than 0
suggests that the model is no better than the observed mean value. For
Pbias, it varies between (− , + ) with the optimal value equal to 0

Fig. 3. The structure of hydrological models tested in this study. The circles show the input variables, the ellipses present the process/output variable and the model
parameters are marked with bold text. For detailed model equations, please refer to the references for the (a) GR4J model (Perrin et al., 2003; Valéry, 2010), (b)
WASMOD model (Xu, 2003), (c) HBV model (Seibert and Vis, 2012), and (d) XAJ model (Lin et al., 2014).
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and worse performance for water balance simulation if the absolute
Pbias is larger.

4. Results

4.1. Hydrological model performance in cross verification

Before evaluating both the hydrological models and the regionalization

methods, we first assessed the performance of the models by a split-sample
test. Figure 4 presents the cumulative density function (CDF) curves for all
hydrological models over 86 catchments, measured by F value during
1980–1989 and 2006–2015.
For the first calibration period 1980–1989 (the left panel in Figure

4), the CDF curves from all the hydrological models stay close, and XAJ
appears to be slightly better. The average F value is approximately 0.75
for XAJ, 0.73 for WASMOD, 0.72 for HBV and 0.69 for GR4J. In the
verification period 2006–2015, the models perform differently,
meaning the temporal transferability varies between the hydrological
models. However, the best performance is still produced by XAJ, whose
mean F value is approximately 0.68, followed by WASMOD (0.64). The
HBV model shows the worst performance, with a mean F value of ap-
proximately 0.61 and the highest degradation of performance between
the calibration and verification periods.
The results in the right panel (calibration in 2006–2015 and ver-

ification in 1980–1989) shows very similar characteristics to those in
the left panel. XAJ produced the best performance for both the cali-
bration and the verification periods. Following the rating classification
from Moriasi et al. (2007), who labeled the performance as ‘good’ if
NSE is larger than 0.65 and |Pbias| is less than 15%, the F values larger
than 0.61 are considered “good” model performance. Considering the
average aspect, all mean F values for our split-sample test are higher
than 0.61. Thus, all hydrological models applied in the current study
are classified as ‘good’ performing models for runoff simulation for both
calibration and verification periods.
Table 6 gives the average model performance corresponding to the

split-sample test by using other assessment criteria. First, regarding the
water balance aspect, all models yield similarly ‘good’ performance for
both subperiods with |Pbias| values smaller than 5%. Second, the model
performance measured by NSE shows consistent findings with the re-
sults from the F value, i.e., (a) the models show similar performance in
the calibration period but perform differently in the verification period;
(b) XAJ is considered the best-performing model for both the calibra-
tion and the verification cases; and (c) HBV shows the largest decline in
performance from the calibration to the verification period. This simi-
larity between the results from the F value and NSE can be explained by
the small Pbias for all the simulation results. Finally, according to the
results of NSElog, which is more sensitive to low flow, the simple
models (GR4J and WASMOD) display higher values in the calibration
period, while WASMOD and XAJ show better performance in the ver-
ification period. Considering the performance loss from calibration to
verification, relatively larger degradation appears for the NSElog than
for the NSE and Pbias, especially for the GR4J model.

4.2. Evaluation of regionalization methods

4.2.1. Influence of the number of donor catchments on performance under
stationary conditions
Figure 5 shows that the output averaging option gives better

average performance than the parameter averaging option in both
spatial proximity and physical similarity methods and for all the
models, except for the case of one donor catchment, where both options
provided the identical results as expected. When considering the
number of donor catchments, the largest increase in performance ty-
pically occurs when changing from using one donor catchment to using
two donor catchments, with the parameter option for XAJ as the only
exception. This is in line with earlier studies that the number of donor
catchments typically affects the performance of distance-based re-
gionalization methods (e.g., Oudin et al., 2008; Yang et al., 2018).
However, the number of donor catchments providing the best perfor-
mance differs among the hydrological models and regionalization
methods. For instance, for XAJ, two donor catchments give the best
results for SP-out, whereas 8 donor catchments are needed for HBV to
achieve the optimal performance. Finally, the difference in performance
between the output and parameter averaging options increases with the

Table 3
Description of the calibrated model parameters in this study.

Parameter Explanation Reference

CemaNeige Valéry (2010)
CTG Ponderation coefficient
Kf Degree-day factor
GR4J Perrin et al. (2003)
X1 Production store maximal capacity
X2 Catchment water exchange coefficient
X3 One-day maximal capacity of the routing

reservoir
X4 HU1 unit hydrograph time base
WASMOD Xu, (2003)
a1 Threshold temperature for rainfall and

snowfall
a2 Threshold temperature for snowpack and

snowmelt
a3 Proportion parameter in potential

evapotranspiration
a4 Exponent parameter in actual

evapotranspiration
a5 Proportion coefficient of base flow
a6 Proportion coefficient of fast flow
a7 Coefficient for snowpack
a8 Coefficient for snowmelt
HBV Seibert and Vis,

(2012)TT Threshold temperature
CFMAX Degree-day factor
SFCF Snowfall correction factor
CFR Refreezing coefficient
FC Field capacity
LP Threshold for reduction of evaporation
Beta Shape coefficient
UZL Threshold parameter for upper zone
K0 Recession coefficient in upper zone
K1 Recession coefficient in upper zone
K2 Recession coefficient in lower zone
Perc Maximal flow from upper to lower box
MAXBAS Routing, length of weighting function
XAJ Lin et al. (2014)
WM Areal soil moisture storage capacity
B The exponent of the soil moisture storage

capacity curve
KE Ratio of potential evapotranspiration to pan

evaporation
IMP Ratio of the impervious to the total area of the

basin
X Proportion of soil moisture storage capacity of

the upper layer to WM
Y Proportion of soil moisture storage capacity of

the lower layer to WM
C Coefficient of deep evapotranspiration
SM Areal mean free water capacity of the surface

soil layer
EX Exponent of the free water capacity curve
KI Coefficient of the free water storage to

interflow
KG Coefficient of the free water storage to ground

flow
N Number of reservoirs in the instantaneous unit

hydrograph
NK Common storage coefficient in the

instantaneous unit hydrograph
CI Recession constant of the lower interflow

storage
CG Recession constant of the groundwater storage
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number of model parameters. For example, the difference in the
average F value between the two options for the GR4J model was ap-
proximately 0.025 and increased to 0.075 for XAJ. Thus, when using a
model with many parameters, it is more important to use the output
averaging option to achieve optimal performance for runoff simulations
in ungauged basins.
The physical similarity methods require fewer donor catchments to

achieve optimal performance for runoff simulations in ungauged basins
compared to that for the spatial proximity methods (Table 7). On
average, the best performance by the physical similarity methods was
produced by 3 donor catchments, whereas the corresponding number

for the spatial proximity methods was 8. It is also noteworthy that the
parameter averaging option requires fewer donor catchments than the
output averaging option for both the physical similarity and the spatial

Table 4
Assumptions and descriptions of regionalization methods used in this study.

Method Equation Assumption and Description Application examples

Spatial proximity D x x y y( ) ( )td t d t d
2 2= + Closer basins show similar hydrological characteristics.

The donor catchments are determined by the distanceDtd. x ,y shows the location
information, which uses the Universal Transverse Mercator (UTM) coordinate
system.

Merz and Blöschl (2004), Oudin et al.
(2008), Yang et al. (2018, 2019)

Physical similarity SItd i
k CDd i CDt i

CDi1
| , , |

= =
Similar attributes show similarly in terms of hydrological processes.
The donor catchments are decided by the similarity index SItd. CD is the
catchment descriptor, shown in Table 2 in this study.

Burn and Boorman (1993), Poissant et al.
(2017), Yang et al. (2018, 2019)

Regression MP f CD( )j j i= A well-behaved relationship exists between the observable CDs and model
parameters (MP), and theCDs used in regression provide information relevant to
hydrological behavior at ungauged sites.
The relationship (linear regression function), which is built on gauged basins,
will be transferred to ungauged catchments.

Young (2006), Oudin et al. (2008), Merz
et al. (2006), Yang et al. (2018, 2019)

t : target catchment.
d: donor catchment.
i: ith catchment descriptors.
k : total number of catchment descriptors.
j: jth model parameter.
CD: catchment descriptor. The climate indices in CDs varied from the calibration to verification period, others are assumed as constant.

Table 5
The tested regionalization methods in this study.

Regionalization methods Abbreviation

Spatial proximity methods with parameter average option SP-par
Spatial proximity methods with output average option SP-out
Physical similarity methods with parameter average option Phy-par
Physical similarity methods with output average option Phy-out
Principal Component Regression method PCR

Fig. 4. The performance of hydrological models by split-sample test evaluated by the F value over 86 catchments. The left panel shows the results for calibration in
1980–1989 and verification in 2006–2015; the right panel displays the results of calibration in 2006–2015 and verification in 1980–1989.

Table 6
Average model performance in terms of Pbias, NSE and NSElog over the tested
catchments in the split-sample test.

calibration verification

1980–1989 2006–2015 2006–2015 1980–1989

Pbias GR4J −0.81 −0.49 −4.37 −2.32
WASMOD 2.61 3.15 −0.54 3.26
HBV −1.62 −1.49 −3.69 −3.90
XAJ −2.34 −1.69 −3.48 −1.80

NSE GR4J 0.76 0.76 0.67 0.66
WASMOD 0.77 0.76 0.68 0.67
HBV 0.77 0.76 0.65 0.65
XAJ 0.79 0.78 0.72 0.71

NSElog GR4J 0.74 0.75 0.39 0.37
WASMOD 0.67 0.71 0.58 0.55
HBV 0.37 0.51 0.28 0.33
XAJ 0.51 0.65 0.52 0.55
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proximity methods. Therefore, for practical applications, it is highly
recommended to analyze the relationship between the regionalization
performance and the number of donor catchments to choose the best
configuration to obtain the optimal results for each case.

4.2.2. Regionalization performance assessment for all catchments
As discussed in Section 2.2 (Figure 2 and Table 1), the climate

conditions, especially air temperature, differed between 1980 and 1989
and 2006–2015. This section presents the influence of climate condi-
tions on regionalization performance when the models are calibrated in
1980–1989. The evaluation results presented here applied the opti-
mized number of donor catchments for each method and model, as
shown in Table 7.

4.2.2.1. Comparison of regionalization performance between hydrological
models. Figure 6 shows the distribution of F values as split violin plots
for the five regionalization methods and four hydrological models for
both the calibration and verification periods. Foremost, for all the
hydrological models, the regionalization methods applying the output
averaging option (SP-out and Phy-out) showed better performance than
the parameter averaging option (SP-par and Phy-par), and the regression
method is the worst (compare black dots with circles). This ranking
applies for both the calibration and the verification periods, where the
methods with output averaging options presented more negative skewed
distributions and higher mode values than those of the other methods.
On the other hand, for both periods, the difference in the average
performance between the regionalization methods is smaller for GR4J
than for the other models. This difference seems to increase with the
number of model parameters and is thus largest for XAJ. For instance, in
the calibration period, the range in the average F values between the
regionalization methods equals 0.04 for GR4J and 0.09 for XAJ. Finally,
from the calibration to verification period, performances decreased for
all the hydrological models and regionalization methods but to various
extents. Measured by the decrease in the overall mean F values from the

calibration (solid line) to verification (dashed line) period, HBV and XAJ
displayed larger declines in performance than those of GR4J and
WASMOD.
Figure7 compares the regionalization performance in terms of the

average values of Pbias, NSE and NSElog for all catchments using four
hydrological models in the calibration and verification periods.
Appendix A presents the violin plot for the evaluation criteria over all
the tested catchments.
Regarding the water balance simulation, all average values of Pbias

vary within (−10%, 10%). The smallest water balance error for re-
gionalized runoff simulation varies with the hydrological models and
regionalization methods. In general, SP-out and Phy-out tend to yield
smaller errors for water balance simulation than those of the other
methods.
The NSE results give similar findings as the F value. First, SP-out and

Phy-out methods perform best for all the hydrological models, with all
average NSE values larger than 0.6, and PCR performs worst. Second,
the difference in NSE between the regionalization methods increases
with the growing number of parameters for the hydrological models.
For example, the regionalization performance in the calibration period
ranges within (0.57, 0.61) for GR4J and (0.57, 0.67) for XAJ. Third,
relatively larger degradation of the average regionalization perfor-
mance is found using the HBV and XAJ models from the calibration to
the verification period.
For the low-flow evaluation, the regionalization methods with the

output average option (SP-out and Phy-out) substantially outperform
the other methods, and the performance differences between the re-
gionalization methods are more distinct for HBV and XAJ. Furthermore,
the average performance of the regionalization methods is highly in-
fluenced by the hydrological models. In this study, WASMOD and HBV
produced the highest and lowest average NSElog values for the re-
gionalization methods, respectively. Compared with the results from
the NSE and F values, the evaluation by NSElog presents a more re-
cognizable performance difference between the regionalization
methods and hydrological models, as well as the difference between the
two subperiods.

4.2.2.2. Comparison of performance between regionalization
methods. Figure 8 compares the performance difference in terms of
NSE and NSElog between the hydrological models for each
regionalization method during the calibration and verification
periods. We omit the results of the F value and Pbias in the following
analysis due to high similarity between the results from the F value and
NSE (see Figure 6 and Appendix A) and small average |Pbias| values
(see Figure 7).

Fig. 5. Model performance versus number of donor catchments for the distance-based regionalization methods and four different models. The number of model
parameters is given in the parenthesis next to the model name.

Table 7
The number of donor catchments providing the best performance for each re-
gionalization method and hydrological model in the leave-one-out cross vali-
dation.

GR4J WASMOD HBV XAJ

SP-par 7 4 8 2
SP-out 10 9 8 9
Phy-par 3 2 2 3
Phy-out 3 5 5 3

X. Yang, et al. Journal of Hydrology 582 (2020) 124357

8



According to the average NSE values, XAJ is considered the best
hydrological model for all the distance-based regionalization methods
and the second best model for PCR. GR4J shows the best results for PCR,
but the difference in performance between the models (the gray bars for
PCR) is smallest among the regionalization methods, indicating that the
hydrological models have relatively smaller influence on the regression
method than on the distance-based methods. However, this difference is
enhanced from the calibration to the verification period, indicating a
larger influence of the hydrological model on future runoff predictions.
According to NSElog, WASMOD shows the best performance for all the
regionalization methods and for both periods. In general, a larger dif-
ference between the hydrological models appears for low flows (in-
dicated by NSElog) than for high flows (indicated by NSE).

4.2.3. Assessment of regionalization performance for different climatic
regions
The three climatic regions shown in Figure 1 display very different

runoff regimes, particularly between the oceanic and the two remaining
groups (Figure 2). For illustration purposes, the dependence of the per-
formance of the regionalization methods on the geographical regions as
measured by NSE is shown in Figure 9. It is seen that the oceanic region
presented generally better regionalization performance than that of the
other two regions, whose performance variation was smaller as well
(only four performance classes shown on the figure). Then, some
common characteristics are presented in all the regions. First, when

considering the regionalization methods, the output averaging option
tended to give higher performance than all the other methods. When
focusing on the hydrological models, XAJ showed the best performance
in most cases for both the calibration and verification periods. Otherwise,
none of the remaining models consistently showed better results than the
other models for all climatic regions and regionalization methods. Fi-
nally, GR4J produced the lowest variation in performance within the
climatic regions between the regionalization methods in almost all cases.
From the calibration to verification period, the highest ranking for XAJ
with SP-out and Phy-out methods did not change.

5. Discussion

5.1. Hydrological model performance

According to the performance classification presented by Moriasi
et al. (2007), the split-sample test result in our study indicated that all
the hydrological models were able to provide ‘good’ simulations of
runoff for both the calibration and the verification periods. Especially
for the water balance simulation, the mean values of |Pbias| for all the
studied models are smaller than 5%.
According to the evaluations in the calibration period based on the F

value and NSE in our study area, XAJ is the best-performing model, and
the performance tends to decrease with a decrease in the number of
parameters for the hydrological models. This finding is in line with the

Fig. 6. Split violin plots show the distributions of F values for the five regionalization methods by each hydrological model during the calibration (left side of the
violin) and verification (right side of the voilin) periods. For each model and regionalization method, the solid black dots show the average performance for the
calibration period, whereas the black circle shows the corresponding value for the verification period. The average performance of all regionalization methods for
each hydrological model is shown as a solid line for the calibration period and as a dashed line for the verification period. The plot displays results from the 86 study
catchments. The ‘model’ in the x-axis label shows the hydrological model performance in the calibration (left side of the violin) and validation (right side of the
voilin) periods.
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Fig. 7. Average performance for the different hydrological models and regionalization methods, given by Pbias, NSE and NSElog. Model* is the result of model
simulation performance in the calibration (‘calib’) and verification (‘valid’) periods.

Fig. 8. Comparison of hydrological model performance over five regionalization methods in the calibration and verification periods. The bar shows the maximum
difference between the hydrological models evaluated by the average NSE and NSElog values over 86 catchments.
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statement that increasing the number of model parameters can lead to
better performance during the calibration period (e.g., Perrin et al.,
2001; Petheram et al., 2012; Parajka et al., 2013). However, the result
in terms of low flow simulation (evaluations by NSElog) did not support
that statement. For example, WASMOD outperformed XAJ and HBV for
both subperiods. Therefore, further study is needed to assess the re-
lationship between hydrological model complexity and performance in
terms of low flow. Furthermore, for the verification results, the per-
formances among the models varied substantially. The degradation of
performance is quite similar between the hydrological models evalu-
ating by the F value and NSE, but distinct differences are shown in the
NSElog results. It reminds us that specific criteria are needed for eva-
luation of hydrological models when the emphasis stands on low flow
or draughts. Regarding the model performance change from the cali-
bration to the verification period, the model performance of the XAJ
model did not vary substantially. This is incompatible with earlier
findings, which suggest that a complex model tends to have less stable
performance than simple models in the verification period (e.g., Perrin
et al., 2001; Holländer et al., 2009). This phenomenon might relate to
the model structure; for instance, the runoff concentration in the XAJ
model includes surface runoff, interflow runoff and groundwater runoff
with three parameters that may better represent the processes in our
study catchments.

5.2. Evaluation of regionalization methods

5.2.1. Influence of the number of donor catchments on performance
To test the influence of the number of donor catchments on model

performance, we examined the relationship between regionalization
performance and the number of donor catchments for all the models
with distance-based methods. The results indicate that using one donor
catchment, which might be either the spatially nearest or physically
most similar watershed, gives worse results than using a set of donor
catchments. This conclusion is supported by all the tested models in our
study, which is in line with previous findings (e.g., Arsenault and

Brissette, 2014; Oudin et al., 2008). Multiple donor catchments typi-
cally provide more information than single donor catchments, which
may explain the behavior described above (e.g., Viney et al., 2009b).
However, the output averaging option might tend to smooth the flow
variability as the number of donor catchments increases. This is espe-
cially the case if the donors give models with different time lags be-
tween rainfall and peak flow. Therefore, the smoothing effect and trade-
off between the benefits of gains in performance with “more informa-
tion” and loss of performance due to this possible smoothing is worth
further investigation in future studies. Our results additionally con-
firmed that the output averaging option provided better performance
than the parameter averaging option in all the model and method
combinations (e.g., Oudin et al., 2008, Bao et al., 2012; Yang et al.,
2018). Since we applied hydrological models with different complex-
ities and number of parameters, a promising and new finding is pre-
sented in this study: the difference in performance between the para-
meter averaging and output averaging options increases with the
number of model parameters (see Figure 5). First, this result can be
explained by the ‘nonlinear independence’ influence between model
parameters; thus, transferring the linearly interpolated individual
model parameter value (the parameter averaging option) will lead to
unreasonable model parameters and results (Bárdossy, 2007). Second,
hydrological models with more parameters tend to increase the inter-
action between their parameters (e.g., Perrin et al., 2003; Poissant
et al., 2017). Hence, we should consider the model parameters as a
whole set rather than individual values for regionalization research as
suggested by Bárdossy (2007) and Oudin et al. (2008).
Some previous studies used one donor catchment for regionalization

evaluation according to spatial or physical similarity and concluded that
the difference in performance between hydrological models is negligible
(e.g., Viney et al., 2009b; Chiew, 2010; Petheram et al., 2012). However,
in the current study, XAJ produced distinct results from the other models
(see Figure 5 results with 1 donor catchment), which suggests that the
performance of regionalization methods is affected by the choice of hy-
drological models even with one donor catchment.

Fig. 9. The performance of the regionalization
methods and hydrological models in different
climatic regions. The size of the boxes is pro-
portional to the average NSE value of the catch-
ments within each climate group. The upper
panel shows the results from the calibration
period, and the lower panel shows the verifica-
tion period. The number of catchments in each
group is given in the title of each column. The
‘Model’ in the x-axis label shows the hydrological
model performance for runoff simulation without
regionalization.
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5.2.2. Assessment over hydrological models
Although we claimed that the methods with the output averaging

option (SP-out and Phy-out) produced better performance than the
other methods, it is difficult to determine the most appropriate method
between the spatial proximity (SP-out) and physical similarity (Phy-
out) methods (also valid for excluding the influence on the hydrological
model performance of calibration and verification, see Appendix B).
This is consistent with the evaluation by using one hydrological model
(monthly WASMOD) in the same area by Yang et al. (2018). According
to the explanation from Oudin et al. (2008), it is not possible to decide
which approach (SP-out or Phy-out) is the most appropriate one when
the streaming network density is lower than 60 stations per
100,000 km2. As we used four hydrological models at different com-
plexity levels, this result additionally confirmed that this assertion is
independent of the selection of hydrological models.
Investigating the model preference for regionalization methods

from different aspects, XAJ should be preferred when the evaluation is
more focused on high flow, while WASMOD should be considered for
low-flow analysis. This result is consistent with the model performance
for gauged catchments (see Figure 4 and Table 6). This result tends to
support the claim that there is no incentive to prefer a parsimonious
hydrological model for regionalization studies rather than a model with
adequate complexity (Arsenault et al., 2015; Poissant et al., 2017).
However, hydrological models with fewer parameters are re-
commended when no preknowledge about the regionalization perfor-
mance is available since the performance difference between the re-
gionalization methods is relatively smaller. For the regression method,
the model with more parameters works worse, probably due to the
stronger interaction influence when increasing the number of para-
meters (e.g., Perrin et al., 2003; Poissant et al., 2017). Another lim-
itation of the regression method is that not all the functions for the
model parameters follow the linear assumption (e.g., Blöschl, 2005)
and poor performance results from the accumulated errors.

5.2.3. Assessment in different climatic regions
According to both the NSE and NSElog results, SP-out and Phy-

out perform best for all the climatic regions. Therefore, it seems
reasonable to conclude that the selection of the climatic region has
no large effect on the ranking of regionalization methods. However,
the average regionalization performance in the oceanic climate re-
gion is substantially better and varies within a smaller range than in
the other two cold regions. This indicates that the uncertainty in the
selection of regionalization methods is larger in cold and dry regions
than in warm and wet regions (see Figure 2). Due to the limited
number of catchments in the oceanic climate and polar tundra cli-
mate regions, further comprehensive studies are needed to conclude
the preferences of hydrological models and regionalization methods
over various regions.

6. Conclusions

The main aim of this study was to investigate how different com-
binations of regionalization methods, hydrological models and climate
conditions will influence the overall performance of hydrological si-
mulations in ungauged basins. We assessed the performance of four
hydrological models and five regionalization schemes (a) under sta-
tionary climate conditions to test how the performance of the

regionalization methods depends on the choice of hydrological models,
(b) under different climate conditions to assess the stability in perfor-
mance of the hydrological models and regionalization methods as cli-
mate changes, and (c) in different climatic regions to test how the
performances of the simulations vary between these regions. The study
was performed using data from 86 catchments in Norway, covering
three climatic groups according to the Köppen-Geiger classification.
In this study, we found that for all the hydrological models, the

distance-based approaches with the output averaging option (SP-out
and Phy-out) always outperformed the other tested methods, especially
for the low-flow estimation. Second, the difference in performance
between the output and parameter averaging options is not stable and
positively increases with the number of parameters for the hydrological
models. From our study, the performance difference between these
options is the largest for XAJ and the smallest for GR4J. Third, the
performance difference among the regionalization methods was smaller
for models with fewer parameters (GR4J and WASMOD) compared to
that of the models with more tunable parameters (HBV and XAJ).
Regarding the model influence on regionalization performance, XAJ is
recommended as the best-performing model according to the evalua-
tions by NSE and F values, whereas NSElog recommends WASMOD as
the best through the evaluation. Furthermore, clear differences in
general were displayed for three climatic regions, and oceanic climatic
regions provided the best performance and smallest variance over the
regionalization methods and hydrological models. Moreover, the dif-
ference in hydrological model performance seems smaller among the
regionalization methods than among the climate regions. From cali-
bration to verification periods, the general performance for the re-
gionalization methods did not show large degradations.
Although this study produced some solid conclusions that were not

available before, there are some limitations of the current study.
Compared with the general evaluation of hydrograph fit and water
balance, assessment with emphasis on low flow showed more con-
trasting results, which requires closer attention in future work. In ad-
dition, studies with more different hydrological models are needed to
show the influence of hydrological model selection on regionalization
performance. Moreover, studies with more contrast in climate condi-
tions are recommended to investigate the transferability of conclusions
across climate regions and climate changing conditions, which is es-
sential for future prediction.
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Appendix

Appendix A. The performance assessment over all tested catchments by Pbias, NSE and NSElog during calibration (left side of the violin) and verification (right side
of the violin) periods. For each model and regionalization method, the solid black dots show the average performance for the calibration period, whereas the black
circles show the corresponding values for the verification period. The average performance of all the regionalization methods for each hydrological model is shown as
a solid line for the calibration period and as a dashed line for the verification period. Model* shows the hydrological model performance for calibration (left side of
the violin) and verification (right side of the violin).
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